Delayed Feedback Circuits

Ana Malagón
University of Washington, ADMX
August 27, 2015
Livermore Workshop

Outline

- What we optimize: SNR
- Delayed Feedback and Conditions Needed to Increase SNR
- Steady-State Analysis
- Experimental Study
- How This Can Fail

what we want to optimize

$$SNR = \frac{P_s}{\delta P_n}$$

feedback

- feedback (as shown) preserves SNR
- sharpens linewidth
 (increases loaded Q) with
 amount adjustable by G
- resonance tunable by shifting phase

$$\alpha = 1 - GS_{21}$$
 $Q \propto \alpha^{-1}$

Fig. 2 Two terminal resonance circuit.

Fig. 3 Two terminal resonance circuit with negative resistance.

Ishikawa, Y.; Yamashita, S.; Hidaka, S., "Noise design of active feedback resonator BEF," in *Microwave Theory and Techniques, IEEE Transactions on*, vol.41, no.12, pp.2133-2138, Dec 1993

time-delayed feedback

Conditions for enhanced SNR:

total gain must be less than I

Seki, H., "Some Studies on Delayed Feedback Circuits," in *Proceedings of the IRE*, vol.46, no.4, pp.758-763, April 1958

steady-state analysis

predicted enhancement

experiment

$\begin{array}{ccc} \text{Parameter} & \text{Values} \\ \hline f_{\text{cav}} & 2.256 \text{ GHz} \\ t_{\text{delay}} & 2.4 \ \mu \text{s} \\ t_{\text{cav}} & 170 \text{ ns} \\ t_{\text{axion}} & 141 \ \mu \text{s} \\ \end{array}$

setup

measurement

- 0. Set feedback gain
- I. Set phase to maximize Q on N.A.
- 2. Send in signal at the resonant frequency
- 3. Turn N.A. off; measure spectrum analyzer trace at resonant frequency with signal on, signal off to get SNR.
- 4. Sweep through feedback gain settings. Repeat measurement with delay line in.

network analyzer trace

results

data after this point was cut, as the BW of the fringes was smaller than the resBW of the spectrum analyzer

status:

phase shifter replaced

blown out amp replaced

way forward

- calibrating interference fringes
- getting a much smaller delay line/increasing the initial Q by x I 0 to remove the fringes
- microwave circuit simulations for sanity checking

problems

- unintentional external feedback (ie reflections in return line)
- many modes within the feedback bandwidth

credits

People

Lisa McBride, Kunal Patel, Gray Rybka

This work was supported by the Dept. of Energy, Division of High Energy Physics.

backup

spectrum analyzer trace

Res BW 47 kHz

VBW 4.7 kHz*

Sweep 23.0 ms (1001 pts